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In 1944, D.P. Dalzell (1898-1988) published a paper in the Journal of the London

Mathematical Society in which he used an integral to give a nice decimal approxi-
mation to ⇡. In this post, we outline his simple but elegant method.

Consider the integral
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After some algebra, we have
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Performing the integration gives
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This gives us the nice result:ˆ 1
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Since the integrand is always positive, we have 22
7 > ⇡. Here are some other easy

estimates. Since 1 < 1 + x
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Evaluating these integrals gives:
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Multiplying the inequality by �1 yields:
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This gives us an upper and lower bound on ⇡ to five decimal places:

3.14127 < ⇡ < 3.14206
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