hypica

modern + nuclear

Name Prices

An x-ray photon collides with an electron in an atom, ejecting the electron and emitting another photon. During the collision, there is conserva-

- 1 momentum, only
- 2 energy, only
- 3 both momentum and energy
- 4 neither momentum nor energy
- 2 After Rutherford bombarded gold foil with alpha particles, he concluded that the volume of an atom is mostly empty space. Which observation led Rutherford to this conclusion?
 - 1 Some of the alpha particles were deflected
 - 2 The paths of deflected alpha particles were hyperbolic.
 - 3 Many alpha particles were absorbed by gold
 - 4 Most of the alpha particles were not deflected.

The threshold frequency for a photoemissive urface is 1.0×10^{14} hertz. What is the work unction of the surface?

- (1) $1.0 \times 10^{-14} \text{ J}$ (2) $6.6 \times 10^{-20} \text{ J}$
- (3) $6.6 \times 10^{-48} \text{ J}$
- (4) $2.2 \times 10^{-28} \text{ J}$

4 A metal surface emits photoelectrons when illuminated by green light. This surface must also emit photoelectrons when illuminated by

- 1 blue light
- 3 orange light
- 2 yellow light
- 4 red light

5 Which electron transition in the hydroger results in the emission of a photon of greatest energy?

- (1) n = 2 to n = 1
- (3) n = 4 to n = 3
- (2) n = 3 to n = 2
- (4) n = 5 to n = 4

The term "electron cloud" refers to the

- l electron plasma surrounding a hot wire
- 2 cathode rays in a gas discharge tube
- 3 high-probability region for an electron near
- 4 negatively charged cloud that can produce a lightning strike

7. What is the minimum energy required to ionize a hydrogen atom in the n = 3 state?

- (1) 13.60 eV
- (3) 5.52 eV
- (2) 12.09 eV
- (4) 1.51 eV

When a source of dim orange light shines on a photosensitive metal, no photoelectrons are ejected from its surface. What could be done to increase the likelihood of producing photo-

- 1 Replace the orange light source with a red light source.
- 2 Replace the orange light source with a higher frequency light source.
- 3 Increase the brightness of the orange light source.
- 4 Increase the angle at which the photons of orange light strike the metal.

9 In Rutherford's model of the atom, the positive charge

- 1 is distributed throughout the atom's volume
- 2 revolves about the nucleus in specific orbits
- 3 is concentrated at the center of the atom
- 4 occupies most of the space in the atom

10 When 8.0-electronvolt photons strike a photoemissive surface, the maximum kinetic energy of ejected photoelectrons is 6.0 electronvolts. The work function of the photoemissive surface is

- (1) 0.0 eV
- (3) 7.0 eV
- (2) 2.0 eV
- (4) 14.0 eV

// If the momentum of a particle is 1.8×10^{-22} kilogram-meter per second, its matter wavelength is approximately

- (1) 1.2×10^{-55} m (3) 3.7×10^{-12} m
- (2) 2.7×10^{11} m
- (4) 5.0×10^{-7} m

12 The work function for a copper surface is 7.3×10^{-19} joule. If photons with an energy of 9.9×10^{-19} joule are incident on the copper surface, the maximum kinetic energy of the ejected photoelectrons is

- (1) 2.6×10^{-19} [
- (3) 9.9×10^{-19} J
- (2) 7.3×10^{-19} j
- (4) $1.7 \times 10^{30} \text{ J}$

- 13 The threshold frequency of a photoemissive surface is 7.1×10^{14} hertz. Which electromagnetic radiation, incident upon the surface, will produce the greatest amount of current?
 - 1 low-intensity infrared radiation
 - 2 high-intensity infrared radiation
 - 3 low-intensity ultraviolet radiation
 - 4 high-intensity ultraviolet radiation
- 14 Which diagram shows a possible path of an alpha particle as it passes very near the nucleus of a gold atom?

- alpha particle path gold nucleus
- 15 A hydrogen atom could have an electron energylevel transition from n = 2 to n = 3 by absorbing a photon having an energy of
 - (1) 1.51 eV
- (3) 4.91 eV
- (2) 1.89 eV
- (4) 10.20 eV
- / > What is the minimum amount of energy needed to ionize a mercury electron in the c energy level?
 - (1) 0.57 eV
- (3) 5.52 eV
- (2) 4.86 eV
- (4) 10.38 eV
- 7 All of the following particles are traveling at the same speed. Which has the greatest wavelength?
- , (1) proton (2) alpha particle (3) neutron

18 Which graph below best represents the relationship between the frequency of a light source causing photoemission and the maximum kinetic energy of the photoelectrons produced?

19Which observation was made by Rutherford when he bombarded gold foil with alpha particles?

(2)

- 1 Alpha particles were deflected toward a positive electrode.
- 2 Some alpha particles were deflected by the gold foil.
- 3 Most alpha particles were scattered 180° by the gold foil.
- 4 Gold foil had no effect on the path of alpha particles.
- ${\mathcal D}$ In the photoelectric effect, the speed of emitted electrons may be increased by
 - 1 increasing the frequency of the light
 - 2 decreasing the frequency of the light
 - 3 increasing the intensity of illumination
 - 4 decreasing the intensity of illumination
- 2/The Rutherford scattering experiments suggested that the mass of the atom is composed mostly of.
 - 1 electrons
- 3 nucleons
- .2 positrons
- 4 alpha particles

(4)

Base your answers to questions 22 through 26 on the graph below which represents the maximum kinetic nergy of photoelectrons as a function of incident electromagnetic frequencies for two different photoemissive metals, A and B.

Note: | hertz = | cycle / second

- 22The slope of each line is known as
 - 1 Bohr's constant
 - 2 the photoelectric constant
 - 3 Compton's constant
 - 4 Planck's constant

23 The threshold frequency for metal A is

- (1) $1.0 \times 10^{14} \text{ Hz}$
- (3) $3.0 \times 10^{14} \text{ Hz}$
- (2) $2.0 \times 10^{14} \text{ Hz}$
- (4) 0.0 H₂

24The work function for metal B is closest to

- (1) 0.0 joules
- (3) 3.0×10^{-19} joule
- (2) 2.0×10^{-19} joule
- (4) 1.5×10^{-14} joule

25 Compared to the work function for metal B, the work function for metal A is

- 1 less
- . 2 greater
 - 3 the same

Monochromatic light with a period of 2.0 × 10⁻¹⁵ second is incident on both of the metals. Compared to the energy of the photoelectrons emitted by metal A, the energy of the photoelectrons emitted by metal B is

- 1 less
- 2 greater
- 3 the same

27 Which graph best represents the relationship between the energy of a photon and its wavelength?

23-11 an orbiting electron falls to a lower orbit, the total energy of that atom will

- 1 decrease
- 2 increase
- 3 remain the same

2 7 Compared to the photon nomentum of blue light, the photon momentum of red light is

- 1 less
- 2 greater
- 3 the same

30 A hydrogen atom changes from the n=1 energy state to the n=3 energy state. This change could be caused by a single photon which has an energy of

- (1) 1.5 eV
- (3) 12.1 eV
- (2) 10.2 eV
- (4) 13.6 eV

3/ Which photon could be absorbed by a hydrogen atom in the ground state?

- (1) 11.0-eV photon
- (3) 3.4-eV photon
- (2) 10.2-eV photon
- (4) 0.54-eV photon

32 Which energy level jump would show as a bright line in the visible spectrum of hydrogen?

- (1) 1 to 2
- (3) 3 to 2
- (2) 2 to 3

(4) 4 to 7

How many neutrons are in an atom of ²²²₈₆Rn?

(1).54

(3) 136

(2) 56

(4) 222

34 The chart below shows the masses of selected particles.

Particle	Mass
²³⁵ ℃	235.0 u
¹³⁵ Ba	137.9 u
⁹⁵ Kr	94.9 u
) 0	1.0 u

In the equation

$$\frac{235}{92}$$
U + $\frac{1}{0}$ n $\rightarrow \frac{135}{56}$ Ba + $\frac{95}{36}$ Kr + $3\frac{1}{0}$ n + E,

the energy E is equivalent to a mass of

(1) 0.2 u

(3) 2.2 u

- (2) 2.0 u
- (4) 0.0 u

3 5 Isotopes of the same element have nuclei with identical

- 1 mass numbers
- 2 binding energies
- 3 numbers of neutrons
- 4 numbers of protons

36 Which subatomic particle can not be accelerated by an electromagnetic field?

1 alpha

- 3 electron
- 2 neutron
- 4 positron

37 According to the Uranium Disintegration Series, the immediate decay product of ²³⁴₉₀Th is

(1) $^{230}_{92}U$

(3) $^{238}_{92}U$

(2) $^{230}_{89}$ Ac

(4) ²³⁴₉₁Pa

38 In the reaction $^{27}_{13}Al + ^{4}_{2}He - ^{30}_{15}P + ^{1}_{0}n + X$, what could X represent?

1 proton

- 3 alpha particle
- 2 gamma radiation
- 4 beta particle

39 A radioactive isotope has a half-life of 3 minutes. If 10 kilograms of this isotope remains after 15 minutes, the original mass of the isotope must have been

- (1) 50 kg
- (3) 250 kg
- (2) 160 kg
- (4) 320 kg

When an atomic nucleus captures an electron, the atomic number of that nucleus

- 1 decreases by 1
- 3 increases by 1
- 2 decreases by 2
- 4 increases by 2

4/ The equation ${}_{1}^{3}H + {}_{1}^{1}H - {}_{2}^{4}He + energy$ is an example of

- 1 alpha decay
- 3 fusion
- 2 positron capture
- 4 fission

42 Which equation represents nuclear fission?

- (1) $^{214}_{82}$ Pb $\rightarrow ^{214}_{83}$ Bi $+ ^{0}_{-1}$ e
- (2) $4_1^1 H \rightarrow {}_2^4 He + 2_{+1}^0 e$
- (3) $^{235}_{92}U + ^{1}_{0}n \rightarrow ^{138}_{56}Ba + ^{95}_{36}Kr + 3^{1}_{0}n$
- $(4) \frac{238}{92}U \frac{234}{90}Th + {}^{4}_{9}He$

Base your answers to questions 43 through 46 the information in the chart below.

Particle	Rest Mass
proton	1.0073 u
neutron	1.0087 u

- The energy equivalent of the rest mass of a proton is approximately
 - (1) $9.4 \times 10^2 \text{ MeV}$
- (3) $9.1 \times 10^{16} \text{ MeV}$
- (2) $1.9 \times 10^3 \,\text{MeV}$
- $(4) 6.4 \times 10^{18} \text{ MeV}$
- A tritium nucleus consists of one proton and two neutrons and has a total mass of 3.0170 atomic mass units. What is the mass defect of the tritium nucleus?
 - (1) 0.0014 u
- (3) 1.0010 u
- (2) 0.0077 u
- (4) 2.0160 u
- - 1 electrostatic force
- 3 magnetic force
- 2 gravitational force
- 4 nuclear force
- 46 Tritium would most likely be used as a
 - 1 fuel in a fusion reaction
 - 2 fuel in a fission reaction
 - 3 coolant in a nuclear reactor
 - 4 moderator in a nuclear reactor
- A nucleus having an odd number of protons and an odd number of neutrons is likely to be radioactive. Which nuclide matches this description?
 - (1) ²⁹Si

 $(3)_{16}^{32}S$

 $(2)_{15}^{32}P$

(4) 35C

- How do cloud chambers, spark chambers, and Geiger counters aid in the study of the nucleus?
 - 1 They detect subatomic particles that exit the nucleus.
 - 2 They detect the presence of a magnetic field around the nucleus.
 - 3 They accelerate the nucleus before it collides with the particle beam.
 - 4 They accelerate subatomic particles that exit the nucleus.
- U 9. Which nuclear particle is emitted as an atom of ²³⁸₉₂U decays to ²³⁴₉₀Th?
 - 1 neutron
- 3 alpha particle
- 2 positron
- 4 beta particle
- 50 In the equation below, what is particle X?

$${}^{9}_{4}\text{Be} + {}^{4}_{2}\text{He} \rightarrow {}^{12}_{6}\text{C} + X$$

- 1 an electron
- 3 a positron
- 2 a proton
- 4 a neutron
- In a nuclear reactor, the function of a control rod is to
 - 1 slow down neutrons
- 3 absorb neutrons
- 2 speed up neutrons
- 4 produce neutrons
- 52The radioactive waste strontium-90 has a half-life of 28 years. How long must a sample of strontium-90 be stored to insure that only $\frac{1}{16}$ of the original sample remains as radioactive strontium-90?
 - (1) 28 years
- (3) 84 years
- (2) 56 years
- (4) 112 years

- Which atom has the same number of neutrons as 16O?
 - $(1)^{-16}N$

 $(3)^{-15}N$

 $(2)^{-17}O$

- $(4)^{-15}$ O
- The force that holds the nucleons of an atom 54 together is
 - 1 weak and short-ranged
 - 2 weak and long-ranged
 - 3 strong and short-ranged
 - 4 strong and long-ranged
- 55 Approximately how much energy is produced when 0.50 atomic mass unit of matter is completely converted into energy?

- (1) 9.3 MeV (2) $9.3 \times 10^2 \text{ MeV}$ (3) 4.7 MeV(4) $4.7 \times 10^2 \text{ MeV}$
- 56 Atoms of different isotopes of the same element contain the same number of
 - I neutrons, but a different number of protons
 - 2 neutrons, but a different number of electrons
 - 3 electrons, but a different number of protons
 - 4 protons, but a different number of neutrons
- 57 The disintegration of the nucleus of an atom of a naturally occurring radioactive element may produce more
 - 1 neutrons in the nucleus
 - 2 electrons in the nucleus
 - 3 protons in the nucleus
 - 4 atomic mass

- 52 In the nuclear equation ${}^{14}_{6}C \rightarrow {}^{14}_{7}N + X$, the X represents a
 - 1 beta particle

3 neutron

- 2 gamma ray
- 4 positron
- 59 The half-life of a radium isotope is 1,600 years. After 4,800 years, approximately how much of an original 10.0-kilogram sample of this isotope will remain?
 - (1) 0.125 kg
- (3) 1.67 kg
- (2) 1.25 kg
- (4) 3.33 kg
- 60 In nuclear reactors, neutrons are slowed down by
 - 1 moderators
- 3 fuel rods
- 2 control rods
- 4 accelerators
- [6] For nuclear fusion to occur, the reacting nuclei
 - 1 absorb thermal neutrons
 - 2 have large kinetic energies
 - 3 be fissionable
 - 4 have a critical mass

Note that question 62 has only three choices.

- 6 2If the mass defect for nucleus X is larger than the mass defect for nucleus Y, then nucleus X has
 - I a smaller binding energy than nucleus Y
 - 2 a larger binding energy than nucleus Y
 - 3 the same binding energy as nucleus Y

FOXTROT By Bill Amend

I HAVE MY PHYSICS FINAL FIRST THING TOMORROW MORNING, SO I FIGURED I SHOULD PROBABLY EAT A

SORT OF LIKE I WAS THINK THEY DO IN ING MORE COMPETITIVE LIKE THEY DO SPORTS? ON DEATH ROW

YOU KNOW, IT'S BY THE WAY FUNNY- I IN CASE I DIDN'T SPECIFY, **NEVER GOT** THESE ULCER THOSE SHOULD PAINS BACK EACH BE TWO. WHEN I WAS POUND LOBSTERS TAKING EXAMS.