Final Review: STRAIGHT LINE MOTION REVIEW

1. A skater goes backward for 20 meters and then forward for 8 meters. The distance covered is
while the displacement of the skater is 12m backward
2. If a person drives 120 miles North to Albany and turns around and drives back home. The
entire trip takes 4 hours. The person's average speed for the trip ismiles permiles per
hour. For the same trip the AVERAGE VELOCITY is miles per hour.
3. A runner accelerates from rest to a velocity of 12 m/sec in 2 seconds time. His
ACCELERATION rate is m/sec2
4. A car has three accelerators. They can all change the velocity of the car.
a) The <u>gas pedel</u> because it can change the <u>speed</u> , and b) The <u>balagedal</u> because it can change the <u>speed</u> , and
b) The bale pedal because it can change the speed, and
c) The <u>Steering wheel</u> because it can change the <u>direction</u> .
5. A ball is thrown straight up in the air. It rises, reaches its peak, and begins to fall
a) As it rises the speed of the ball (INC/DEC/REMAINS THE SAME)
b) As it FALLS the speed of the ball (INC/DEC/REMAINS THE SAME)
c) At its peak, the magnitude of the ball's velocity is
d) At its peak the magnitude of the ball's acceleration is 10 m/s & the direction of the
acceleration is
C TY : 1 C 1 is a laboration in woods
6. Write the equation for average velocity and then write the equation in words. $ \frac{d}{dx} = \frac{dx}{dx} \text{or } \frac{d}{dx} \text{velocity is equal to displacement} $ 7. Write the equation for average velocity and then write the equation in words.
7 Write the equation for acceleration and then write the equation in words.
7 Write the equation for acceleration and then write the equation in words. a = {\frac{4}{t}} acceleration is charge in velocity per unt time

Questions 8-12 refer to this graph of a person's motion as they stroll on the Post Road.

a) 0-10 seconds Moving backward Speeding up
b) 30-40 seconds Moving backward Speeding up
c) 40-50 seconds Moving backward Slowing dow-

Distance vs Time

Questions 13-21 refer the displacement vs. time graph above.

13) Determine the velocity at
$$t = 3$$
 sec. Shope of Printeral so $\frac{6-0}{4-0} = 1.5$ m/s

Time (s)

14) Determine the velocity at t = 9 sec.

15) Name a time interval(s) when the object experienced POSITIVE velocity.

16) Name a time interval(s) when the object experienced NEGATIVE velocity.

17) Name a time interval(s) when the object is not moving.

18) Name a time interval(s) when the object experienced ZERO acceleration.

19) Name a time interval(s) when the object is speeding up

20) Name a time interval(s) when the object is slowing down 4 - 6 s 14 - 18 s

21) Name a time interval(s) when the object is moving backward while slowing.

SHOW YOUR WORK. WRITE the EQUATION. INCLUDE substitutions with UNITS.

1. How far can a car travel in 30 minutes if it has an average speed of 70 km/hr?

$$3 V = \frac{\delta X}{t}$$

$$3 = 35 \text{ km or } 3,500 \text{ m}$$

$$70 \text{ km/m} = \frac{\delta X}{.5 \text{ hr}}$$

2. a) What is the acceleration of a ball if it starts from rest at the top of a hill and reaches 2.4 m/sec in 3 sec. ?

b) What is the average speed of the ball during the 3 seconds?

c) How far has the ball rolled during the 3 seconds?

$$\overline{V} = \frac{\Delta x}{t} = 1.2 \text{m/s} = \frac{\Delta x}{3s}. \quad \Delta x = 3.6 \text{m}$$

- 3. A rock falls off a cliff and hits the ground 2.5 seconds later.
- a) How fast will it be going as it hits the ground?

$$\int_{9}^{4} \int_{0}^{100} a = \frac{\Delta V}{t}$$

$$\int_{0}^{4} \int_{0}^{100} \int_{0$$

b) How high is the cliff?
$$d = \sqrt{10 + 29t^2} = \frac{1}{2}(10 + 5)^2 = 31.25 \text{ m}$$